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INTRODUCTION

As the usage of RESTful API endpoints continues to increase in the data center and for multi-cloud operations, the need for 
a secure and highly available method for accessing API endpoints increases. One of the less involved steps you can take to 
authenticate against an API is to use a token.

In this paper, we go over the architecture of token based requests, our secure API token architecture, how to create and use 
a token, and provide some thoughts on token rotation and distributed design. We are using Rubrik Cloud Data Management 
(CDM) 5.0 platform’s set of RESTful APIs and token management to demonstrate the concepts and workflows.

OVERVIEW OF AUTHENTICATION TYPES

Most RESTful API endpoints will accept two different types of authorization: Basic authentication and Token (Bearer) 
authentication. This information is stored in the header of an API request to prove the identity of the user. More specifically, 
a key name of Authorization is paired with a value that contains the appropriate credentials.

BASIC AUTHENTICATION

The idea behind basic authentication is to send a key-value pair in the request header that contains the credentials necessary 
to use a RESTful method. This is similar in nature to sending a username and password to authenticate against any other 
session-based request; the server checks to ensure that you, the user, have the appropriate permissions and role required to 
access the desired resources.

Basic authentication is a simple method for authorizing a session and is often used for short-lived and ad-hoc requests. For 
example, a monitoring solution that is infrequently gathering data from an API resource will often use basic authentication to 
gather the needed data. Additionally, you may wish to retrieve some administrative cluster information - such as the cluster 
status or network topology - to answer an ad-hoc question from a colleague.

Generating the header required for basic authentication can be explained in three steps:

Take the string “{username}:{password}” and encode it using Base64, where {username} is the actual username and 
{password} is the actual password. The colon between username and password is important, even if there is no password. 
For this example, the username is “SpongeBob” and the password is “SquarePants”.

“SpongeBob:SquarePants” is the plain text string 
“U3BvbmdlQm9iOlNxdWFyZVBhbnRzCg” is the base64 encoded string

Prefix this string with the word Basic, resulting in “Basic {base64_value}”.

“Basic U3BvbmdlQm9iOlNxdWFyZVBhbnRzCg”

A header key of Authorization is created, with the above results stored in the value.

“Authorization: Basic U3BvbmdlQm9iOlNxdWFyZVBhbnRzCg”

For more information on basic authentication for scripting, you can read my blog post entitled “Tackling Basic RESTful 
Authentication with PowerShell” to better understand how the base64 string is encoded in the value. There is a section 
dedicated to crafting a basic authentication key-value pair.

https://wahlnetwork.com/2015/10/29/tackling-basic-restful-authentication-with-powershell/
https://wahlnetwork.com/2015/10/29/tackling-basic-restful-authentication-with-powershell/
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TOKEN AUTHENTICATION

Token authentication is a much more popular method for handling authorization, especially across public cloud services. 
Instead of using the credentials of a user, a token is instead used to represent the session of that user. The user’s permissions, 
role, and scope remain tied to the user account itself with the token being used for authentication purposes. These are helpful 
for services that need to programmatically call upon the API and can be invalidated if leaked, breached, or no longer needed 
without adversely affecting the user account.

Rubrik uses the concept of an API Token to map to the token authentication model for tasks such as automated workflows, 
script authentication, and Multi-factor Authentication (MFA).

The header value for an API Token looks similar to the basic authentication, except that the word “Basic” is replaced with 
“Bearer” and the value used is the API Token, not a base64 encoded username and password. For example:

Authorization: Bearer joiN2NiNGIyN

This will be covered in more depth in the Common API Token Workflows section of this document.

SECURE API TOKEN ARCHITECTURE

A Rubrik cluster is comprised of a collection of nodes that form a distributed cluster under a single namespace. With the 5.0 
CDM release, sessions and API Tokens are globally available from any node within the cluster and can survive node failures, 
restarts, and upgrades.

To accomplish this, the cluster maintains session details in a distributed session table. This table holds the userId as the 
partition key and the token as the clustering key. Tokens are generated with JSON Web Tokens (JWT), an open standard 
(RFC 7519) that defines a compact and self-contained way for securely transmitting information between parties as a JSON 
object. The tokens are digitally signed using HMAC-SHA256 algorithm.

• SHA-256 is a cryptographic hash function that generates a 256-bit hash for text.

• Hash-based Message Authentication Code (HMAC) is a piece of information used to authenticate a message, 
confirming the integrity and authenticity of the message.

When a token reaches its expiration time, it is deleted. Deletion was chosen over archiving as it is more logical for the purposes 
of tokens which are meant to be transient. Sessions may be created and deleted in high frequency for this same reason.

Note: You can visit /node/{id}/sessions to retrieve a list of all active sessions, which includes sessions 
based on API Tokens.

Rubrik’s API Tokens have additional layers of security applied to them, such as following a “View On Create” philosophy that 
ensures the token value is only visible during creation. Once created, the only possible future action is to delete the token.

The following requests are not available to API Tokens for enhanced security:

• Updating or deleting any MFA (Multi-factor Authentication) servers.

• Creating new sessions or generating additional API tokens.

• Creating new user accounts or updating user account information.

• Updating user preferences.

• Creating, updating, or deleting LDAP services.

https://tools.ietf.org/html/rfc7519
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COMMON API TOKEN WORKFLOWS

The following workflows are commonly used to create, consume, remove, and rotate an API Token when interacting 
with a Rubrik cluster.

GENERATING A NEW API TOKEN

The process for manually creating a new API Token is to log into the UI under whatever account you wish to 
represent with a token.

• Click on the account name in the upper right corner of the UI and select API Token Manager.

• From there, a list of all API Tokens that have been generated will appear, but the token value itself is not shown and is 
only available at the time of generation for security purposes.

• Click the green “+” button in the upper right corner to start a new token wizard, then fill in the duration (in days) and a 
tag value (to describe the token) to complete the workflow.

The UI simplifies choices down to duration and tag.

You can also request a token using an automated workflow and the PowerShell SDK for Rubrik. The command is 
New-RubrikAPIToken and will generate an API Token that adheres to your expiration and tagging needs. Keep in mind, 
however, that there is a limit to how many active tokens you can have concurrently valid, and that scripting token generation 
should be a part of your token lifecycle management security process to rotate in fresh tokens.

In the example below, I have requested a new API Token to use with a serverless function running on AWS Lambda in US 
West 1 (N. California). The PowerShell function is sending a POST request to /session using the current session information. 
I have truncated the resulting values for brevity and highlighted the API Token in red:

New-RubrikAPIToken -Expiration 600 -Tag ‘aws-us-west-1-lambda’ 

Id : 7cb4b25c

organizationId : Organization:::b6c0d1d1

userId  : 30047f2a

Token : joiN2NiNGIyN

expiration  : 2019-06-26 20:05:28

Tag : aws-us-west-1-lambda

https://build.rubrik.com/sdks/powershell/
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Under the covers, an API request is being sent using my session information to generate a new API Token. The payload of 
the body is as follows:

Body = {

 “initParams”: {

 “apiToken”: {

 “tag”: “aws-us-west-1-lambda”,

 “expiration”: 600

 }

 }

}

Note: At the time of this paper, the length of a tag cannot exceed 20 characters.

If you’d also like to get a list of different API Tokens that exist, send a GET request to /session with a query parameter 
containing your user ID value. Alternatively, the PowerShell function Get-RubrikAPIToken will retrieve all known tokens 
based on your current session’s user ID value.

MAKING A REQUEST WITH AN API TOKEN

The use of a token for authorization changes the header construction slightly. The key remains authorization but the value 
changes to using the word Bearer followed by the token itself. Using “Bearer” seems to be the single most troublesome spot 
for those new to authenticating with a token. For example:

Authorization: Bearer joiN2NiNGIyN

If using the Rubrik REST API Explorer, click on the green Authorize button on the top right of the page.

1. Scroll down to the API Key Authorization section and enter the word Bearer (red line), insert a space, and then paste 
the API Token (green line). Note that the token below is truncated for brevity.

2. Click Authorize to use the API Token for subsequent requests during your session.

The “Basic” value changes to “Bearer” when a token is used.
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The API Token will remain in place until it reaches the expiration date and time. The token will delete itself and become 
invalid beyond that point.

It’s also possible to use the token with the PowerShell SDK for Rubrik. Instead of passing along a credential object or manually 
entering your username and password, use the token parameter as shown below:

Connect-Rubrik -Server 192.168.1.124 -Token joiN2NiNGIyN 

Name Value

---- -----

Time 2019-06-26 14:40:06

Api 1

Server 192.168.1.124

Header {Authorization, User-Agent}

Id null

userId null

Version 5.0.0

You are now able to execute API requests by way of the SDK using the API Token. For example, if I wanted to get 
information on an SLA Domain:

Get-RubrikSLA -Name ‘Gold AWS DND’ -PrimaryClusterID ‘local’ 

id : e641d876-0955-4e7e-a7f1-a162281fdc74

primaryClusterId : 8b4fe6f6-cc87-4354-a125-b65e23cf8c90

name : Gold AWS DND

--snip--

REMOVING AN API TOKEN

In the event that you need to remove an API Token prior to its expiration, such as seeing that a colleague accidentally put it in 
their GitHub repository, it’s important to understand the process.

From a UI perspective, visit the API Token Manager page and select the token that should be removed, then choose “Delete” to 
remove it. Or, send a POST request to the /session/bulk_delete endpoint with an array of token ID values.

Alternatively, use the PowerShell SDK for Rubrik to remove the token. The cmdlet Remove-RubrikAPIToken accepts the 
token id value as the only parameter, as shown below:

Remove-RubrikAPIToken -TokenId ‘7cb4b25c’ 

Confirm

Are you sure you want to perform this action?

Performing the operation “Deletes session tokens” on target “7cb4b25c”.

[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help (default is “Y”): y

Because this is a destructive operation, the cmdlet requires confirmation and be silenced with -Force if you do not want to 
entertain manual acceptance. You can also pass an array argument that contains multiple token id values if you want to remove 
more than one at a time, which I have found to be handy in testing environments. Here is an example:

Remove-RubrikAPIToken -TokenId 

(“11111111-2222-3333-4444-555555555555”,”aaaaaaaa-bbbb-cccc-dddd-eeeeeeeeeeee”)
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ROTATING YOUR API TOKEN

While it’s possible to generate a token that lasts for 365 days, this isn’t the ideal use case for a production environment. I prefer 
to use shorter lived tokens that live in a secure vault and are rotated on a regular basis, such as weekly or monthly. Or issue 
them to others who need access for a limited period of time, such as power users, contractors, or a project team.

In these situations, my standard operation procedure is to:

• Use short lived tokens and store them in AWS KMS, HashiCorp Vault, secured variables in AppVeyor and Azure 
Automation, or even something more consumer like KeePass for certain situations.

• Make sure your code is referencing a token from these locations. Don’t use a hard coded value that is not easily rotated.

• Generate a new token prior to the expiration of the old token using the PowerShell SDK for Rubrik, a direct call to the 
RESTful API (such as Invoke-RestMethod or curl), or any other trigger-based workflow that you prefer that can hit an 
API endpoint as the user or service account that is represented by the token.

Getting in the habit of using tokens for automation will increase your security awareness, reduce your reliance on user 
credentials, and aid your transition into a more service-oriented architecture approach.

HIGHLY AVAILABLE API DESIGN

Since session state is persistent across a Rubrik cluster, any node can be used for API requests. This works regardless of the 
authentication method chosen: basic and token authentication are both valid across the entire cluster namespace. Because of 
this, there is no need to push state handling to a virtual IP or virtual namespace at the network layer.

However, customers are often keen to use a namespace that exceeds a single node when using various automation and 
scripting models. In this section, we will explore different design considerations for highly available API requests, such as round 
robin DNS and third party load balancing.

ROUND ROBIN DNS

A simple method for offering load distribution is to leverage round-robin DNS. This requires configuring multiple DNS A 
records to represent the various IP addresses that are presented by two or more Rubrik cluster nodes. Each A record is 
generated using identical host names mapping to a unique IP address with a short Time To Live (TTL) of 1 minute, which 
is adjustable for your specific preferences. It is advised to keep the TTL short, such as 1 - 5 minutes, to ensure that various 
requests are being sent to different nodes frequently.

1. A client seeks to resolve the Rubrik cluster’s DNS address and sends a request.

2. The DNS server responds with one of the IP addresses in the list of A records. In this case, the second 
A record is selected.

3. The client resolves to the second A record and stores it in memory for the duration of the TTL. This provides load 
distribution among multiple nodes for responding to API requests.
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For example, a hostname of “cluster-b-rr.rubrik.us” is generated on a DNS server that is authoritative for the rubrik.us testing 
domain. Using a DNS query tool such as nslookup will reveal all of the A records that exist for the hostname, as shown below:

nslookup cluster-b-rr.rubrik.us

Name: cluster-b-rr.rubrik.us

Addresses: 192.168.150.121

 192.168.150.122

 192.168.150.123

 192.168.150.124

There are a few design considerations to be aware of with this approach. Namely, the fact that the health and utilization of 
the nodes are not considered. However, the trade-off is simplicity in the implementation and ability to scale rapidly by adding 
(or removing) A records from DNS without the need for any third party software or hardware. Using metadata related to node 
health is covered in a later section entitled Node Health Checks.

TEST CONFIGURATION

The following configuration was used for this test:

• Rubrik CDM 5.0 on a 4 node cluster

 – Node A - 192.168.150.121

 – Node B - 192.168.150.122

 – Node C - 192.168.150.123

 – Node D - 192.168.150.124

• Rubrik API Token

• Live Mount of a VMware Virtual Machine
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The following workflow was used to test the usage of API Tokens across the cluster. Each request was made to the DNS name 
with a 1 minute TTL to ensure that requests rotated among different nodes within the Rubrik cluster.

1. Send a request to Node A to create a Live Mount for a VMware VM and receive the async request id that represents the 
long-lived task of generating the clone.

2. Send a request to Node B to check the status of the Live Mount.

3. Send a request to Node C to get details on the Live Mount.

4. Send a request to Node D to remove the Live Mount.

TEST RESULTS

For each test run, the results were observed, captured, and validated using a series of PowerShell scripts across a single session 
established with an API Token that was stored securely in memory on the test client. No other sessions were established or 
initiated. Each script was separated by a client-side DNS flush to ensure that a new IP addresses was retrieved by the client 
from the DNS server.

Test 1: Send a request to Node A to create a Live Mount for a VMware VM and receive the async request id that represents the 
long-lived task of generating the clone.

ipconfig.exe /flushdns
ping cluster-b-rr.rubrik.us -n 1

Get-RubrikVM -id $vmid | Get-RubrikSnapshot | Select-Object 

-First 1 | New-RubrikMount

Successfully flushed the DNS Resolver Cache.

Pinging cluster-b-rr.rubrik.us [192.168.150.121] with 32 bytes of data:

Reply from 192.168.150.121: bytes=32 time=1ms TTL=61

id :  

MOUNT_SNAPSHOT_301079a4-3430-4c78-864c-c863147be99c_723b7ee4-a70b-4251-

a0b6-ff932422b361:::0

status : QUEUED

progress : 0

startTime : 2019-07-18 00:40:57

links :  

{@{href=https://cluster-b-rr.rubrik.us/api/v1/vmware/vm/request/MOUNT_SNAPSHOT_301079a4-

3430-4c78-864c-c863147be99c_723b7ee4-a70b-4

 251-a0b6-ff932422b361:::0; rel=self}}
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Test 2: Send a request to Node B to check the status of the Live Mount.

ipconfig.exe /flushdns

ping cluster-b-rr.rubrik.us -n 1

Get-RubrikRequest -id $snapid.id -Type:vmware/vm

Successfully flushed the DNS Resolver Cache.

Pinging cluster-b-rr.rubrik.us [192.168.150.122] with 32 bytes of data:

Reply from 192.168.150.122: bytes=32 time=1ms TTL=61

id  :  

MOUNT_SNAPSHOT_301079a4-3430-4c78-864c-c863147be99c_723b7ee4-a70b-4251-

a0b6-ff932422b361:::0

status  : SUCCEEDED

startTime  : 2019-07-18 00:40:57

endTime  : 2019-07-18 00:41:08

nodeId  : cluster:::RVM182S004243

links  :  

{@{href=https://cluster-b-rr.rubrik.us/api/v1/vmware/vm/snapshot/mount/86669656-b6cf-

446f-95cb-ff9af1b50394; rel=result}, @{href=https://cluster-b-rr.rubrik.us/api/v1/

vmware/vm/request/MOUNT_SNAPSHOT_301079a4-3430-4c78-864c-c863147be99c_723b7ee4-a70b-

4251-a0b6-ff932422b361:::0; rel=self}}

Test 3: Send a request to Node C to get details on the Live Mount.

ipconfig.exe /flushdns

ping cluster-b-rr.rubrik.us -n 1

Get-RubrikMount -id 86669656-b6cf-446f-95cb-ff9af1b50394

Successfully flushed the DNS Resolver Cache.

Pinging cluster-b-rr.rubrik.us [192.168.150.123] with 32 bytes of data:

Reply from 192.168.150.123: bytes=32 time=1ms TTL=61

snapshotDate  : 2019-07-17 23:19:58

createDatastoreOnlyMount  : False

vmId  : VirtualMachine:::1226ff04-6100-454f-905b-5df817b6981a-vm-78

isReady  : True

datastoreReady  : True

hostId  : VmwareHost:::1226ff04-6100-454f-905b-5df817b6981a-host-71

datastoreName  : rubrik_86669656b6cf446f95cbff9af1b50394

mountTimestamp  : 2019-07-18 00:40:57

powerStatus  : poweredOn

id  : 86669656-b6cf-446f-95cb-ff9af1b50394

mountedVmId  :  

VirtualMachine:::1226ff04-6100-454f-905b-5df817b6981a-vm-43478

hasAttachingDisk  : False
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Test 4: Send a request to Node D to remove the Live Mount.

ipconfig.exe /flushdns

ping cluster-b-rr.rubrik.us -n 1

Remove-RubrikMount -id 86669656-b6cf-446f-95cb-ff9af1b50394

Successfully flushed the DNS Resolver Cache.

Pinging cluster-b-rr.rubrik.us [192.168.150.124] with 32 bytes of data:

Reply from 192.168.150.124: bytes=32 time=1ms TTL=61

id  :  

UNMOUNT_SNAPSHOT_e9156564-9714-45e9-87df-b07038ebc35a_a47fb010-f5d3-4021-

b68f-456aa02e296e:::0

status  : QUEUED

progress  : 0

startTime  : 2019-07-18 01:44:05

links  :  

{@{href=https://cluster-b-rr.rubrik.us/api/v1/vmware/vm/request/UNMOUNT_SNAPSHOT_

e9156564-9714-45e9-87df-b07038ebc35a_a47fb010-f5d3

 -4021-b68f-456aa02e296e:::0; rel=self}}

NODE HEALTH CHECKS

If using a third party solution - such as load balancers from Citrix NetScaler, F5 BIG-IP, or VMware NSX - more opportunities to 
gauge a node’s health are made available. These solutions offer the ability to report on the health of a node based on user-
defined checks with data validation. The desired nodes can be added to a virtual pool and checked for health to determine if 
they should be active or inactive within the pool’s available node list.

For simple node availability, it is advised to use a request to one of the following open (unsecured) endpoints 
using the GET method:

• /cluster/me/api_version

• /cluster/me/version

The resource being queried does not require authentication, making them ideal for simple up / down health checks. A healthy 
node should return a status code of 200 along with a string formatted in JSON that provides the API version and Cloud Data 
Management version, respectively. If a node does not respond with the correct status code and response string, the node can 
be removed from the virtual pool on the load balancer.

If your load balancer supports authentication, you can also query the following endpoint using the GET method to determine 
if a node is healthy:

• /cluster/me/system_status

The state of the node will be returned as a string, with “OK” being the optimal value received. The value deviates from being 
“OK” when there are failures detected by the node, such as a degradation hard drive or flash device, and will result in showing 
“BAD”. A periodic health poll of the node can be leveraged to determine when to remove or re-add a node to the virtual 
pool. It is advised to treat any condition other than “OK” as a health check failure since the node may also be undergoing 
maintenance, bootstrap, or an upgrade.
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CONCLUSION

The usage of an API Token that is available across a logical namespace of clustered nodes provides a tangible benefit for 
customers looking to leverage automation against the Rubrik APIs and SDKs. For those that also wish to simplify their 
namespace with the usage of round robin DNS or a third party load balancing solution, there exists opportunities to provide 
load distribution to nodes for UI and API requests.
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